

Deep learning and weak supervision for image classification

Matthieu Cord (LIP6 UPMC) Joint work with Thibaut Durand and Nicolas Thome MLIA Team (Patrick Gallinari)

Université Pierre et Marie Curie (UPMC / Paris 6 / Jussieu) - LIP6 Sorbonne Universités

17th of May 2016

Outline

1. Deep learning for object recognition

- Architecture
- Results
- Learning
- Using deep in Computer Vision
- Key issues for Deep & Vision

2. Weakly supervised deep learning

- Architecture
- Results

@Xiaogang Wang, CUHK, ICIP Tutorial 2014

Neural network Back propagation

1986

- Solve general learning problems
- Tied with biological system

But it is given up...

- Hard to train
- Insufficient computational resources
- Small training sets
- Does not work well

@Xiaogang Wang, CUHK, ICIP Tutorial 2014

- SVM
- Boosting
- Decision tree
- KNN
- ...

- Flat structures
- Loose tie with biological systems
- Specific methods for specific tasks
 - Hand crafted features (GMM-HMM, SIFT, LBP, HOG)

@Xiaogang Wang, CUHK, ICIP Tutorial 2014

- Unsupervised & Layer-wised pre-training
- Better designs for modeling and training (normalization, nonlinearity, dropout)
- New development of computer architectures

 GPU
 - Multi-core computer systems
- Large scale databases

Big Data !

Rank	Name	Error rate	Description
1	U. Toronto	0.15315	Deep learning
2	U. Tokyo	0.26172	Hand-crafted
3	U. Oxford	0.26979	features and
4	Xerox/INRIA	0.27058	Bottleneck.

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

A. Krizhevsky, L. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," NIPS, 2012.

• ImageNet 2013 – image classification challenge

Rank	Name	Error rate	Description
1	NYU	0.11197	Deep learning
2	NUS	0.12535	Deep learning
3	Oxford	0.13555	Deep learning

MSRA, IBM, Adobe, NEC, Clarifai, Berkley, U. Tokyo, UCLA, UIUC, Toronto Top 20 groups all used deep learning

ImageNet 2013 – object detection challenge

Rank	Name	Mean Average Precision	Description
1	UvA-Euvision	0.22581	Hand-crafted features
2	NEC-MU	0.20895	Hand-crafted features
3	NYU	0.19400	Deep learning

ImageNet 2014 – Image classification challenge

Rank	Name	Error rate	Description
1	Google	0.06656	Deep learning
2	Oxford	0.07325	Deep learning
3	MSRA	0.08062	Deep learning

• ImageNet 2014 – object detection challenge

Rank	Name	Mean Average Precision	Description
1	Google	0.43933	Deep learning
2	СИНК	0.40656	Deep learning
3	DeepInsight	0.40452	Deep learning
4	UvA-Euvision	0.35421	Deep learning
5	Berkley Vision	0.34521	Deep learning

- Convolution uses local weights shared across the whole image
- **Pooling** shrinks the spatial dimensions
- Many other Deep Models (not convolutional):
 - Deep belief Net Hinton'06 Stack RBM
 - Auto-Encoder Hinton and Salakhutdinov 06

Large CNN [Slides @Fergus tutorial NIPS 2013] Architecture of the IMAGENET Challenge 2012 Winner:

Krizhevsky et al. [NIPS2012]

- Same model as LeCun'98 but:
 - Bigger model (8 layers)
 - More data $(10^6 \text{ vs } 10^3 \text{ images})$
 - GPU implementation (50x speedup over CPU)
 - Better regularization (DropOut)

- 7 hidden layers, 650,000 neurons, 60,000,000 parameters
- Trained on 2 GPUs for a week

From very deep to very very very ...

VGG, 16/19 layers, 2014

GoogleNet, 22 layers, 2014

ResNet, 152 layers, 2015

Feature engineering/ feature learning

Key issues for Deep&Vision

- Supervised/Unsupervised(predictive) learning generic data representation
 - ⇒ "L'apprentissage profond non-supervisé : questions ouvertes", Y. LeCun (Facebook, NYU), 2nd workshop on deep (2016) at LIP6 with GdR ISIS
- Weak on theoretical support:
 - Convergence => math of deep learning tuto Vidal/Bruna ICCV 2015
 - Why it works ? Deep structure analysis/understanding
 - ⇒ Talk of S. Mallat (Collège de France 2016): "on y comprend à peu près rien", first workshop on deep (2015) at LIP6 with GdR ISIS
- ImageNet: Object recognition task
 - How to do for large and complex scenes ?
 - Localization: R-CNN [Girshick CVPR2014]
 - ⇒ Fast R-CNN [ICCV 2015], Faster R-CNN [NIPS 2015]

Outline

1. Deep learning for object recognition

- Architecture
- Results
- Learning
- Using deep in Computer Vision
- Key issues for Deep & Vision

2. WSL deep learning

Joint work with Thibaut Durand and Nicolas Thome (LIP6)

Context: image classification

- Xlabels
- Deep
 CNN

- Weakly-Supervised Learning (WSL)
- Select relevant regions \rightarrow better prediction
- No bounding box (expensive)
- Baseline model: Latent SVM [Felzenszwalb, PAMI10]

label="car"

Standard deep CNN architecture: VGG16

Simonyan et al. Very deep convolutional networks for large-scale image recognition. ICLR 2015

Problem

• Fixed-size image as input

Problem

• Fixed-size image as input

Adapt architecture to weakly supervised learning

- 1. Fully connected layers \rightarrow convolution layers
 - sliding window approach

Problem

• Fixed-size image as input

Adapt architecture to weakly supervised learning

- 1. Fully connected layers \rightarrow convolution layers
 - sliding window approach

Problem

• Fixed-size image as input

Adapt architecture to weakly supervised learning

- 1. Fully connected layers \rightarrow convolution layers
 - sliding window approach
- 2. Spatial aggregation
 - Perform object localization prediction

WSL deep architecture

• C: number of classes

WSL deep architecture: region selection

[Oquab, 2015]

- Region selection = max
- Select the highest-scoring window

original image

motorbike feature map

max prediction

Oquab, Bottou, Laptev, Sivic. Is object localization for free? weakly-supervised learning with convolutional neural networks. CVPR 2015

Our WSL deep CNN: region selection

New region selection strategy

- max + min pooling (MANTRA prediction function)
 - max: indicator of the presence of the class
 - min: indicator of the absence of the class
- Use negative evidence

• Durand et al. MANTRA: minimum maximum latent structural svm. ICCV 2015

• Parizi et al. Automatic discovery and optimization of parts. ICLR 2015

Our WSL deep CNN: region selection

k-instances

• Single region to multiple high scoring regions:

$$\max
ightarrow rac{1}{k} \sum_{i=1}^k i\text{-th max}$$

• More robust region selection.

Our WSL deep CNN: architecture

Our WSL deep CNN: learning

• Objective function for multi-class task and k = 1:

$$\min_{\mathbf{w}} \mathcal{R}(\mathbf{w}) + \frac{1}{N} \sum_{i=1}^{N} \ell(f_{\mathbf{w}}(\mathbf{x}_{i}), y_{i}^{gt})$$
$$f_{\mathbf{w}}(\mathbf{x}_{i}) = \arg\max_{y} \left(\max_{h} \mathsf{L}_{\mathsf{conv}}^{\mathbf{w}}(\mathbf{x}_{i}, y, h) + \min_{h'} \mathsf{L}_{\mathsf{conv}}^{\mathbf{w}}(\mathbf{x}_{i}, y, h') \right)$$

How to learn deep architecture ?

- Stochastic gradient descent training.
- Back-propagation of the selecting windows error.

Our WSL deep CNN: learning

Class is present

• Increase score of selecting windows.

Figure: Car map

Our WSL deep CNN: learning

Class is **absent**

• Decrease score of selecting windows.

Figure: Boat map

Experiments

- VGG16 pre-trained on ImageNet
- Torch7 implementation

Datasets

VOC07/12

- Object recognition: Pascal VOC 2007, Pascal VOC 2012
- Scene recognition: MIT67, 15 Scene
- Visual recognition, where context plays an important role: COCO, Pascal VOC 2012 Action

15 Scene

0.000

VOC12 Action

MIT67

Experiments

Dataset	Train	Test	Classes	Classification
VOC07	${\sim}5.000$	\sim 5.000	20	multi-label
VOC12	${\sim}5.700$	${\sim}5.800$	20	multi-label
15 Scene	1.500	2.985	15	multi-class
MIT67	5.360	1.340	67	multi-class
VOC12 Action	~ 2.000	~ 2.000	10	multi-label
COCO	\sim 80.000	\sim 40.000	80	multi-label

Experiments

• Multi-scale: 8 scales (combination with Object Bank strategy)

Object recognition

	VOC 2007	VOC 2012
VGG16 (online code) [1]	84.5	82.8
SPP net [2]	82.4	
Deep WSL MIL [3]		81.8
Our WSL deep CNN	90.2	88.5

Table: mAP results on object recognition datasets.

[1] Simonyan et al. Very deep convolutional networks. ICLR 2015

[2] He et al. Spatial pyramid pooling in deep convolutional networks. ECCV 2014

[3] Oquab et al. Is object localization for free? CVPR 2015

Scene recognition

	15 Scene	MIT67
VGG16 (online code) [1]	91.2	69.9
MOP CNN [2]		68.9
Negative parts [3]		77.1
Our WSL deep CNN	94.3	78.0

Table: Multi-class accuracy results on scene categorization datasets.

[1] Simonyan et al. Very deep convolutional networks. ICLR 2015

[2] Gong et al. Multi-scale Orderless Pooling of Deep Convolutional Activation Features. ECCV 2014

[3] Parizi et al. Automatic discovery and optimization of parts. ICLR 2015

Context datasets

	VOC 2012 action	COCO
VGG16 (online code) [1]	67.1	59.7
Deep WSL MIL [2]		62.8
Our WSL deep CNN	75.0	68.8

Table: mAP results on context datasets.

[1] Simonyan et al. Very deep convolutional networks. ICLR 2015

[2] Oquab et al. Is object localization for free? CVPR 2015

Visual results

Aeroplane model (1.8)


```
Bus model (-0.4)
```


Visual results

Motorbike model (1.1)

Sofa model (-0.8)

Visual results

Sofa model (1.2)

Horse model (-0.6)

Analysis

- Analyze the different improvements.
- Mono-scale experiments (smallest).

a) max	b) +k=3	c) +min	d) +AP	VOC07	VOC12 action
\checkmark				83.6	53.5
\checkmark	\checkmark			86.3	62.6
\checkmark		\checkmark		87.5	68.4
\checkmark		\checkmark	\checkmark	88.4	71.7
\checkmark	\checkmark	\checkmark		87.8	69.8
\checkmark	\checkmark	\checkmark	\checkmark	88.9	72.6

Analysis

- Analyze the different improvements.
- Mono-scale experiments (smallest).

a) max	b) +k=3	c) +min	d) +AP	VOC07	VOC12 action
\checkmark				83.6	53.5
\checkmark	\checkmark			86.3	62.6
\checkmark		\checkmark		87.5	68.4
\checkmark		\checkmark	\checkmark	88.4	71.7
\checkmark	\checkmark	\checkmark		87.8	69.8
\checkmark	\checkmark	\checkmark	\checkmark	88.9	72.6

- max + min > max
- with top > without top
- AP loss > Acc loss

Analysis

• Impact of the number or regions k

Comparison with supervised object detector

Fast Region-based Convolutional Network (Fast R-CNN)

Girshick. Fast R-CNN. ICCV 2015

Comparison with supervised object detector

	Fast R-CNN	WS-CNN
Goal	detection	classification
	selective search	sliding window
Region proposal	image dependent	fixed grid
	several ratio/size	1 ratio/size per scale
Region pooling	Rol pooling layer	network architecture
Forward	all regions	all regions
Back-propagation	all regions	only selected regions
Loss	region-level	image-level
Annotation	object bounding-boxes	presence/absence

(more) Key issues for Deep&Vision

• Supervised Image Segmentation task

- Deep generative models
- Compression/Embedded/Green nets

(more) Key issues for Deep&Vision

- Visual7W: Grounded Question Answering in Images [Yuke Zhu...Fei-Fei CVPR 16]
- Connection to sequential learning RNN, LSTM, memory nets, ...
- Connection to Neurosciences

LIP6 Team Ref. on deep learning and Visual representation:

Matthieu Cord

http://webia.lip6.fr/~cord

LIP6, Computer Science DepartmentUPMC Paris 6 - Sorbonne University, Paris FRANCE

Deep learning for Visual Recognition

- WELDON: Weakly Supervised Learning of Deep Convolutional Neural Networks, T. Durand, N. Thome, M. Cord, CVPR 2016
- Deep Neural Networks Under Stress, M. Carvalho, M. Cord, S. Avila, N. Thome, E. Valle, ICIP 2016
- Max-Min convolutional neural networks for image classification, M. Blot, M. Cord, N. Thome, ICIP 2016
- <u>MANTRA: Minimum Maximum Latent Structural SVM for Image Classification and Ranking</u>, T Durand, N Thome, M Cord, ICCV 2015
- LR-CNN for fine-grained classification with varying resolution, M Chevalier, N Thome, M Cord, J Fournier, G Henaff, E Dusch, ICIP 2015
- <u>Top-Down Regularization of Deep Belief Networks</u>, H. Goh, N. Thome, M. Cord, JH. Lim, NIPS 2013
- <u>Sequentially generated instance-dependent image representations for classification</u>, G Dulac-Arnold, L Denoyer, N Thome, M Cord, P Gallinari, ICLR 2014
- Learning Deep Hierarchical Visual Feature Coding, H. Goh+, IEEE Transactions on Neural Networks and Learning Systems 2014
- Unsupervised and supervised visual codes with Restricted Boltzmann Machines, H. Goh+, ECCV 2012
- Biasing Restricted Boltzmann Machines to Manipulate Latent Selectivity and Sparsity, H. Goh+, NIPS workshop 2010 Bio-inspired Representation
- <u>Cortical Networks of Visual Recognition</u>C Thériault, N Thome, M Cord, Biologically Inspired Computer Vision: Fundamentals and Applications, book chapter
- <u>Extended coding and pooling in the HMAX model</u>, C. Thériault, N. Thome, M. Cord, IEEE Trans. on Image Processing 2013

Visual representation

- <u>Pooling in Image Representation: the Visual Codeword Point of View</u>, S. Avila, N. Thome, M. Cord, E. Valle, A. araujo, CVIU 2013
- <u>Dynamic Scene Classification: Learning Motion Descriptors with Slow Features Analysis</u>, C. Thériault, N. Thome, M. Cord, CVPR 2013