
Model Synchronization:
Theory and Practice

*With first class-support for Feature Modeling

Krzysztof Czarnecki

University of Waterloo

Canada

Acknowledgements

Michal Antkiewicz
Zinovy Diskin
Yingfei Xiong

Goals

Map out the problem space

Theory
Sketch elements of an algebraic framework to model

sync

See Zinovy Diskin’s tutorial paper for more precise
account [GTTSE’11]; also [JOT’11], [MODELS’11]

Practice
Focus on practical examples

Solutions to various problems in model sync

Roadmap

Single model consistency management

Multi-model consistency management

Examples
Replica synchronization
View synchronization

General overlap

Roadmap

Single model consistency management

Multi-model consistency management

Examples
Replica synchronization
View synchronization

General overlap

Single-Model Consistency
Management

Consistency: Model satisfies some constraint
E.g., well-formedness, instance space properties,

behavioral correctness

Consistency management
Check for constraint satisfaction
Identify and explain sources of inconsistency
Generate fix proposals

Examples
Java type checking and quick fixes in Eclipse
Alloy instance generation
Behavioral model checking

a:A

A = (SA,CA)

Typing mapping

a⊧CA

Consistency of a with
respect to CA:

i.e., model a satisfies
constraint CA

c1:class

class

subclass

c2:class

c3:class

s1:subclass

s2:subclass

Structure type

No cycles

Constraint (spec)

Roadmap

Single model consistency management

Multi-model consistency management

Examples
Replica synchronization
View synchronization

General overlap

Multi-Model Consistency
(aka model sync)

Complex notion

Model overlaps, often implicit

Global consistency of N models means consistency
of any subset of them

Its management is complex, too

Discover correspondences among models

Update of a multi-model is multi-update

Updates potentially done by different people

Consistency Management
Operations

Matching

 Produces model correspondences

 Heuristic vs. precise matching

Consistency check wrt. correspondences

Resolution of conflicting updates

Update propagation

 May involve update translation

Consider Two Models

a b

a:A b:B

A = (SA,CA) B = (SB,CB)

a:A b:B

r:R

A = (SA,CA) B = (SB,CB) R = (SR,CR)

a⊧CA
Saying a consistent with b means

 a,b consistent and {

 their correspondence consistent {

b⊧CB
r⊧CR

Correspondence
(simple traces or

complex
intermediate

model)

Model Correspondence

Different types
Set of element-to-element and link-to-link correspondences

(e.g., replica sync)
Complex intermediate model (e.g., across languages)

How to obtain
Could be produced by a matching procedure, e.g.,

match(a,b) = r
May need to be constructed manually

And consistency…
Given an automatic match procedure, the consistency

relation becomes binary
(a,b) ⊧match(a,b):R CR

Two Dimensions

Modeling languages

Homogenous: both models in same language

Heterogeneous: both models in different languages

Consistency relation (modulo matching)

Relational

Functional

Bijective

Info in models

A B

A B

A B

[a] = [b]

[a]

[b]

[a] [b]

Model mappings

relational

functional

bijective

Manual Refinement Example

Java code
using Applet
framework

Applet
model

Java Applet Modeling
Language

Examples

Homogenous
Relation: workflow refinement (heuristic match)

Function: projection of a product-line variant
(automatic match)

Bijection: replica synchronization

Heterogeneous
Relation: BPMN-to-BPEL

Function: FSMLs

Bijection: KM3-to-UML class models

Updates

State-based
Two revisions of a model + element-wise

correspondence
Reduces to a pair of revisions if correspondence

automatic

Operation-based
Edits logs
Element correspondence automatic or in the log

Composition
Correspondence composition (state-based)
Type-aware (updates typed by their operations)

Revisions
(in time)

Models

R1

R0

MA MB

A0 B0

A1 B1

cA0B0

cA1B1

uA0A1 uB0B1

Roadmap

Single model consistency management

Multi-model consistency management

Examples
Replica synchronization
View synchronization

General overlap

Applet design language

Metamodel in Clafer

[SLE’10]

Applet *

 name : String

 parameter *
 name : String

 xor mouseListener ?
 self
 helper

Applet

name : String

mouseListener

0..1

parameter
name : String

*

self helper

0..1 0..1

«xor»

Applet *

 name : String

 parameter *
 name : String

 xor mouseListener ?
 self
 helper

Applet

name : String
Applet *

name : String

mouseListener

0..1

mouseListener ?

[mouseListener =>
 "dblClick" in parameter.name]

parameter
name : String

*
parameter *

name : String

<key>

<key>

self helper

0..1 0..1

«xor»

 xor mouseListener ?
self
helper

Replica synchronization
homogenous, bijective

(consistent when isomorphic, ≅)

Applet

 name = "Cart"

MB MM

MB’ MM’

≅

mB’M’

uB uM

Applet

 name = "Cart"

Applet

 name = "Cart"

Applet

 name = "Cart"

 mouseListener
 helper

Applet

 name = "Cart"

 parameter
 name = "size"

 mouseListener
 self

Applet

 name = "Cart"

MB MM

MB’ MM’

≅

mB’M’

uB uM

Applet

 name = "Cart"

Applet

 name = "Cart"

Applet

 name = "Cart"

 mouseListener
 helper

Applet

 name = "Cart"

 parameter
 name = "size"

 mouseListener
 self

Applet

 name = "Cart"

 parameter
 name = "size"

 mouseListener
 self
 helper

MB MM

MB’ MM’

≅

mB’M’

uM uB

MB’’ MM’’
mB’’M’’

uM’ uB’

MX

MX’

≅

mM’X’

uX

MX’’
mM’’X’’

uX’

MB MM

MB’ MM’

≅

mB’M’

uM uB

MB’’ MM’’
≅

uM’ uB’

R
e

co
n

cile

MB MM

MB’ MM’

≅

mB’M’

uM uB

MB’’ MM’’
≅

uM’ uB’

R
e

co
n

cile
 Applet

 name = "Cart"

 parameter
 name = "size"

 mouseListener
 helper

Replica synch –
Summary

Homogenous consistency check

• Match as span

• Merge via co-limit

– result over same metamodel

• Constraint check on merge result

• [Sabetzadeh, Easterbrook 2006]

Tile composition and operations

• 2D deltas in space of replicas and versions

• Rephrased as double categories

– With horizontal and vertical composition

• Reconciliation as a tile operation

• [CVSM’09]

Heterogeneous view
synchronization

Back to our Applet
example…

Applet
 name = "sun.WireFrame.ThreeD"
 !extendsApplet

 parameter
 name = "model”
 parameter
 name = "scale”
 listensToMouse
 !implementsMouseListener
 !registers
 deregisters
 deregistersSameObject
 registersBeforeDeregisters

Applet model Applet code

Java code
using Applet
framework

Applet
model

Java Applet Modeling
Language

Applet *

 name : String

 !extendsApplet

 parameter *

 name : String ?

 listensToMouse ?

 !implementsMouseListener

 !registers

 deregisters

 deregistersSameObject

 registersBeforeDeregisters

<class>

<fullyQualifiedName>

<assignableTo: ‘Applet’>

<callsReceived: ‘getParameter(String)’>

<valueOfArg: 1>

<callsReceived: ‘addMouseListener(Mous[…])’>

<callsReceived: ‘removeMouseListener(M[…])’>

<argument:1 of call: ../../registers
sameAsArg: 1 of call: ../../deregisters>

<methodCall: ../../../registers before:
../..>

Applet modeling
language syntax

Mapping
to code

Bidirectional
transformation

via
Lenses

M S

S’ M’

ΔM

 put

get

ΔS

State-based lens

[Pierce et al. 2003-2010]

M S

S’ M’

ΔM

 put

get

ΔS

Delta-based lens

[ICMT’10]

Applet *

 name : String

 !extendsApplet

 parameter *

 name : String ?

 listensToMouse ?

 !implementsMouseListener

 !registers

 deregisters

 deregistersSameObject

 registersBeforeDeregisters

<class>

<fullyQualifiedName>

<assignableTo: ‘Applet’>

<callsReceived: ‘getParameter(String)’>

<valueOfArg: 1>

<callsReceived: ‘addMouseListener(Mous[…])’>

<callsReceived: ‘removeMouseListener(M[…])’>

<argument:1 of call: ../../registers
sameAsArg: 1 of call: ../../deregisters>

<methodCall: ../../../registers before:
../..>

Applet modeling
language syntax

Mapping
to code pu

t

get

put

get

Queries and update trafos

• Approximations of behavioural mapping types
– Precision and recall for queries

– Potentially partial implementation by
transformations

• Refinements through additional parameters
for queries and transformations
– Query (get) – different precision

– Trafo (put) – e.g., additional control over location
of additions

[TSE’09, ASEJ’09]

Applet
implementations

In Java

Applet models

r

 put

S MS M
r ≅

ΔMS

M’S S’

ΔS ΔM

M’
r

ΔS’

S’’

m

cm
p

M’’S M’’
≅

ΔM’S ΔM’
rec

get

General overlap

UML sequence diagram UML state chart

Overlap?
Consistency?

Four problems

Problems 1: Type Safety

same

Incompatible types: Operation vs. MessageType !

Problem 2: Indirect correspondence

Class

Operation

Property

Parameter

mmCD

*

*
*

mmSD

messages
2
*

Message

Object

MsgType

Lifeline
lifeline Class

type

*

*

1
1obj

1

No explicit target in mmSD (and sd)!

same

?

Problem 3: Inter-Model Constraints

Sequence diagram

sd

Statechart

sc

≤

The inter-model constraint is neither
in mmSD nor mmSC!

Problem 4: N-ary Metamodel Relations

Pairwise, ternary, … overlaps!
Overlaps between overlaps!

Solutions

Problem 1: Type Correspondence

Class diagram

cd

Sequence diagram

sd

Metamodel
mmCD

Metamodel
mmSD

Metamodel
mmCA

cd2CA sd2CA

view def m1 view def m2

g
e
t g
e
t

Operation ‘get’ models view

execution mechanism

traceability

mapping m1

traceability

mapping m2 same

Common metamodel

Problem 2: Indirect Overlap

mmSD+

messages
2

*
Message

Object

MsgType

Lifeline
lifeline

*

Class

type

*

*

<<derived>>
/mtp

obj

Problem 3: Inter-Model Constraints

A view to
mmSD

A view to
mmSC

Mapped to derived
elements in mmSD

Inter-model constraint:
Traces consistent with
the flat Statemachine

Problem 4: N-ary Metamodel
Interrelations

m1
mmCD mmCA

mmSC

mmSD

m2

m3

mmCTrSM

m4

m5

m6

[=]

[=]

Summary – Heterogeneous Case

• Heterogeneous consistency check is reduced
to the homogeneous one but metamodel
merging is minimal
– only to manage inter-metamodel constraints,

working as locally as possible

• Despite heterogeneity, matching is type safe

• Applicability to a wide class of metamodeling
techniques (based on graph-like structures)

• Formal foundations based on the well-
established institution theory

Local vs. total consistency checking

Class diagram

cd

Sequence

diagram sd

Statechart

sc

Two approaches:

(a) Total direct merge: cd, sd, sc are
considered instances of the same
global metamodel M.
M can be derived from the
metamodel mappings.

cd + sd + sc

Merge

(b) Local merge: we first specify an
overlap metamodel CA = a common
view to CD, SD, SC. Then project the
three models to the overlap and apply
Consistency Checking by Merge.

cd2CA

cd

sc

sc2CA

sd

sd2CA

cd2CA+
sd2CA+
sc2CA

At least two
approaches

sync in the relational
case

Symmetric Lenses

• Complement-based
– [Hofmann, Pierce, Wagner 2011]

– Two functions
• putr : X ✕ C -> Y ✕ C

• putl : Y ✕ C -> X ✕ C

– Can be built from two asymmetric ones
• X (X ✕ Y) Y

• Delta-based
– [MODELS’11]

– Generalization of asymmetric delta lenses

Overlap-based approach

• Identify overlap metamodel

• Project both domains into the overlap

• Use two lenses into the overlap

• See [GTTSE’11]

Overlap State charts Sequence
diagrams

get

put

get

put

Summary

Sketched an algebraic model-sync
framework

Instantiated for design views on code

Advanced roundtrip engineering

Showed how to deal with general overlap
of multiple heterogeneous models

Thanks for listening!

Questions?

References
[Sabetzadeh, Easterbrook 2006] M. Sabetzadeh and S. M. Easterbrook. View Merging in the presence of incompleteness and inconsistency. Requirements Engineering Journal, vol 11, pp174-193.

2006.

[Pierce et al] Foster,J.N., Greenwald, M.B.,Moore, J.T.,Pierce, B.C., Schmitt,A.. Combinators for bidirectional tree transformations: A linguistic approach to the view-update. problem. ACM

Trans. Program. Lang. Syst. 29 (3) (2007)

[SLE’10] Bąk, K., K. Czarnecki, and A. Wąsowski, "Feature and Meta-Models in Clafer: Mixed, Specialized, and Coupled", 3rd International Conference on Software Language

Engineering, Eindhoven, The Netherlands, 10/2010

[CVSM’09] Diskin, Z., K. Czarnecki, and M. Antkiewicz, "Model-versioning-in-the-large: Algebraic foundations and the tile notation", 2009 ICSE Workshop on Comparison and Versioning

of Software Models (CVSM), Vancouver, BC, Canada, IEEE, pp. 7 - 12, 2009

[ICMT’10] Diskin, Z., Y. Xiong, and K. Czarnecki, "From State-Based to Delta-Based Bidirectional Model Transformation", 3rd International Conference on Model Transformation,

Malaga, Spain, Springer, pp. 61-76, 06/2010

[TSE’09] M. Antkiewicz, K. Czarnecki, and M. Stephan, "Engineering of Framework-Specific Modeling Languages", IEEE Transactions on Software Engineering, vol. 35, issue 6, pp. 795 -

824, 11/2009

[ASEJ’09] M. Antkiewicz, T. Tonelli Bartolomei, and K. Czarnecki, "Fast Extraction of High-Quality Framework-Specific Models from Application Code", Automated Software

Engineering, vol. 16, issue 1, pp. 101 - 144, 03/2009

[MDI’10] Diskin, Z., Y. Xiong, and K. Czarnecki, "Specifying Overlaps of Heterogeneous Models for Global Consistency Checking", 1st Workshop on Model Driven Interoperability, Co-

located with MoDELS 2010, Oslo, Norway, ACM Press, pp. 42-51, 10/2010

[GTTSE’11] Diskin, Z. Model Synchronization: Mappings, Tiles, and Categories. GTTSE’09 Post-Proceedings, Springer, 2011

[MODELS’11] Diskin, Z., Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, and F. Orejas, "From State- to Delta-based Bidirectional Model Transformations: the Symmetric Case", ACM/IEEE 14th

International Conference on Model Driven Engineering Languages and Systems: Springer, 10/201
[JOT’11] Diskin, Z., Y. Xiong, and K. Czarnecki, "From State- to Delta-Based Bidirectional Model Transformations: the Asymmetric Case", Journal of Object Technology, vol. 10, 2011

See http://gsd.uwaterloo.ca/publications

