
Taming Complexity of Large

Software Systems:

Contracting, Self-Adaptation

and Feature Modeling

Philippe Collet

Habilitation à diriger des recherches

Université de Nice - Sophia Antipolis

6 décembre 2011

What this is all about

Large software systems

Contracting

Adding self-adaptive

capabilities

Software Engineering

 Systematic, quantifiable,

disciplined approaches

 Master complexity to

reduce costs

What this is all about

Large systems of systems

Software

Product

Lines

T2

MRI

MedicaI Image

DICOMAnonymized

T1

T2

MRI

Medical Image

DICOMAnonymized

T1<<requires>>

Composition

Variability models

Large software systems

 Ever-rising complexity of software

 Ultra-large scale (size, volume of data, decentralization, conflicting

requirements, continuous evolution)

 New software architectures (distributed components, services)

 Finding the right trade-off between reliability and flexibility

 Providing well-grounded but pragmatic techniques and

tools for software architects

 How to design dynamically reconfigurable components with confidence

 How to deal with changes at reconfiguration / run times

 How to manage variability in large systems of systems

Scientific Context and Approach

Motivations

 Contracting

 Adding Self-adaptive Capabilities

 Feature Model Composition

 Conclusion and Perspectives

Agenda

 Issues in Component-Based Software Engineering

 How to obtain confidence in component specification and assembly

 How to take into account dynamic reconfigurations

 A Solution

 Adapted forms of contracts for CBSE

 Contracts?

 Specification and verification of properties on software entities, while

attributing well-defined responsibilities [Design by Contract, Meyer88]

 Executable assertions for Object-Oriented languages (Eiffel…)

Software Contracting

ConFract: a contracting system

External

Composition

Contract

Interface Contract

Fractal hierarchical components

Collaboration France

Télécom R&D

Contract Management
 Incremental construction

 Handling of dynamic reconfigurations

Internal

Composition

Contract

Dynamic

building

on <pl>

 context void mpl.start()

 pre c.expectedCPUUsage(getUrl().getDataSource(),

 <this>.attributes.getFrameRate()) <= 60

 post h.lastUrl().equals(getUrl())

Spec.

Contract Object

 Participants and

responsibilities

(guarantor, beneficiary)

 Moments of validity

(checking driver)

Interact: a Contracting Framework

 Issues

 How to integrate different formalisms

 How to deal with different forms of architectures

 Framework

 A model for the contracting kernel

 Abstraction

 Extensible for languages

 Extensible for platforms

 A generic and well-grounded contracting kernel

 Assume-guarantee logic (Abadi/Lamport) for responsibility determination

[Abadi & Lamport 90]

 Support for horizontal and vertical compositions

Interact: a Contracting Framework

Alain Ozanne PhD

 France Télécom R&D

 Collab. UPMC

Contracts in a Model-Driven Tool Chain

 Issue

 How to automate

contracting from business

requirements to execution

platforms

 Solution

 End-to-end Model-driven

engineering process for

supporting contracts

 The FAROS project

funding

 Extension of the contracting kernel

 Event definition

 Observers and Checkers

 Applications

 Validate the contracting kernel

 5 different software platforms (including ConFract)

 3 different case studies (including one using ConFract)

Contracts in a Model-Driven Tool Chain

funding

Motivations

 Contracting

 Adding Self-adaptive Capabilities

 Feature Model Composition

 Conclusion and Perspectives

Agenda

 Issue

 How to master the dynamicity of large scale software systems

 Self-adaptive system

 Capacity to monitor its own behavior, and its environment

 Capacity to evaluate relevant states

 Capacity to change behavior

 Focus

 Contracting mechanisms

Monitoring mechanisms

Self-adaptation

 Capacity to automatically reestablish violated contracts or

to reconfigure the architecture

Making contracts negotiable

Contract clauses:
nbMaxUsers >=200

memoryLevel<=50

…

Negotiate on non

functional aspects

Integrate negotiation

into components

Drive negotiation

processes

Exploit contract

information

 Inspired by the Contract-Net-Protocol [Smith 80]

 reusing responsibilities determined by ConFract

 Parameterized by negotiation policies (alternatives)

 Concession based and effort based policies

General negotiation model

external composition contract on <pl>

provisions on server interface MultimediaPlayer

mpl:

 void start()

 pre: guarantor: <fp> beneficiaries: <pl>

 c.canPlay(…

Guarantor

Negotiation

Proposals

Hervé Chang PhD

Funding and collab.

France Télécom R&D

 Patterns for describing compositional non-functional

properties

 Classification of properties

 Integration in component hierarchy

 Exploitation in effort-based

 negotiation

 Self-adaptiveness of the negotiation system

 Negotiation mechanisms as components

 Contracts on these components (timeout, oscillation detection)

Additional Capabilities

Core

<c>

nbMaxUsers

GC

nbMaxUsers

GC

Propagation

UserManager

<um>

Server

<s>

 Issues

 Decision making systems are using Service Level Agreements

 Quality of Service (performance, availability, etc.)

 Quality of Information (coherency, freshness, etc.)

 How to manage allocation of scarce resources (bandwidth, CPU, etc.)

 How to manage changing situations

 Solution: a framework

 Data richness (e.g., aggregation)

 Quality of information (QoI) awareness (e.g., QoI specification and

mechanisms)

 Resource awareness and enforcement

 Self-adaptation (e.g., runtime changes of clients, resources…)

Adaptive Monitoring

Self

Adaptation

ADAMO: QoI-aware Monitoring Framework

Bao Le Duc PhD

 France Télécom R&D

 Collab. UPMC

Data

Collector view q1 view q2

QoI

Control

Dimensions:

- CPU

- Memory

With QoI constraints:

- age of values ≦ 5 minutes

- coherency between values ≦ 2 minutes

Resource

constraints

Motivations

 Contracting

 Adding Self-adaptive Capabilities

 Feature Model Composition

 Conclusion and Perspectives

Agenda

 Software Product Lines

 Factoring out commonalities for reuse

Managing variabilities for software mass customization

 Feature Models

Widely used

 Formal Semantics

 Propositional formula (^, v, ~, , =>)

 Automated Reasoning Techniques

 Satisfiability, configuration checking…

 Tools

 Language, editors...

Feature Modeling

Cross-tree constraints
NaturalLight and Night Implies

(Infrared and not LargeAngle)

...

 Issue

 How to manage large, complex and multiple feature models

 Solution

 Apply Separation of Concerns

 Provide a set of composition / decomposition operators

 Ground the operators on a sound basis (semantic not syntactic)

 Reuse / extend automated reasoning techniques

Composition of Feature Models

 Insertion, aggregation, merge (union, intersection)

 Slice (= projection)

 Resulting support

 Well-defined semantics

 Guaranteeing semantic properties by construction (configuration set)

 Producing more compact feature models

 Efficiently implemented (good scalability w.r.t. existing techniques)

Composition operators

=

=

Mathieu Acher PhD

 MESR funding

 Applications

 Consistent assembly of variable service workflow

 End to end variability handling in video-surveillance processing chains

 Reserve engineering of architectural feature models

Domain Specific Language and Applications

FAMILIAR

And-Group

Optional

Mandatory

Xor-Group

Or-Group

constraints

……..

DirectX

V10 V10.1 v11

Outputs

VIVO DVI HDMI

S-Video Composite

VGA

GraphicCard And-Group

Optional

Mandatory

Xor-Group

Or-Group

TV output

constraints

VGA excludes TV output

HDMI implies v10.1 or v11

constraints

……..

constraints

……..

constraints

……..

// foo.fml

fm1 = FM (“foo1.tvl”)

fm2 = FM (“foo2.m”)

fm3 = merge intersection { fm1 fm2 }

c3 = counting fm3

renameFeature fm3.TV as

“OutputTV”

fm5 = aggregate { fm3 FM

(“foo4.xml”) }

assert (isValid fm5)

fm6 = slice fm5 including fm5.TV.*

export fm6

True/False

8759

“OutputTV”, “TV”

Interoperability Language facilities Environment

Motivations

 Contracting

 Adding Self-adaptive Capabilities

 Feature Model Composition

 Conclusion and Perspectives

Agenda

Results

2002 2005 2008 2011

Contracting system

Contracts and Tests

Contracting Framework and Models

Components

& services

Alain

Ozanne

Feature Model composition

Supporting DSL

Software

Product

Lines

Mathieu

Acher

Non-functional Properties

Contract Negotiation

Self-adaptive Monitoring

Components

& services
Bao.

Le Duc

Hervé

Chang

Research Roadmap

Contracting

Model-driven Construction of Self-adaptive Systems

1 ongoing PhD

Checking and Contracting Self-Adaptive Systems

Software Product Lines of Self-Adaptive Systems

Scalable Feature Model Composition

Relation of Features to Other Models

 2 international journals: SQJ, JSW

 1 national journal: L’Objet

More than 20 international conferences: ASE, CBSE, SC,

SAC, SEAA, SEKE, ECMFA, SOFSEM…

 And other publications such as

 International workshops

 Registered / publicly available software

 Contract and project deliverables…

Main publications

Questions

