
Taming Complexity of Large

Software Systems:

Contracting, Self-Adaptation

and Feature Modeling

Philippe Collet

Habilitation à diriger des recherches

Université de Nice - Sophia Antipolis

6 décembre 2011

What this is all about

Large software systems

Contracting

Adding self-adaptive

capabilities

Software Engineering

 Systematic, quantifiable,

disciplined approaches

 Master complexity to

reduce costs

What this is all about

Large systems of systems

Software

Product

Lines

T2

MRI

MedicaI Image

DICOMAnonymized

T1

T2

MRI

Medical Image

DICOMAnonymized

T1<<requires>>

Composition

Variability models

Large software systems

 Ever-rising complexity of software

 Ultra-large scale (size, volume of data, decentralization, conflicting

requirements, continuous evolution)

 New software architectures (distributed components, services)

 Finding the right trade-off between reliability and flexibility

 Providing well-grounded but pragmatic techniques and

tools for software architects

 How to design dynamically reconfigurable components with confidence

 How to deal with changes at reconfiguration / run times

 How to manage variability in large systems of systems

Scientific Context and Approach

Motivations

 Contracting

 Adding Self-adaptive Capabilities

 Feature Model Composition

 Conclusion and Perspectives

Agenda

 Issues in Component-Based Software Engineering

 How to obtain confidence in component specification and assembly

 How to take into account dynamic reconfigurations

 A Solution

 Adapted forms of contracts for CBSE

 Contracts?

 Specification and verification of properties on software entities, while

attributing well-defined responsibilities [Design by Contract, Meyer88]

 Executable assertions for Object-Oriented languages (Eiffel…)

Software Contracting

ConFract: a contracting system

External

Composition

Contract

Interface Contract

Fractal hierarchical components

Collaboration France

Télécom R&D

Contract Management
 Incremental construction

 Handling of dynamic reconfigurations

Internal

Composition

Contract

Dynamic

building

on <pl>

 context void mpl.start()

 pre c.expectedCPUUsage(getUrl().getDataSource(),

 <this>.attributes.getFrameRate()) <= 60

 post h.lastUrl().equals(getUrl())

Spec.

Contract Object

 Participants and

responsibilities

(guarantor, beneficiary)

 Moments of validity

(checking driver)

Interact: a Contracting Framework

 Issues

 How to integrate different formalisms

 How to deal with different forms of architectures

 Framework

 A model for the contracting kernel

 Abstraction

 Extensible for languages

 Extensible for platforms

 A generic and well-grounded contracting kernel

 Assume-guarantee logic (Abadi/Lamport) for responsibility determination

[Abadi & Lamport 90]

 Support for horizontal and vertical compositions

Interact: a Contracting Framework

Alain Ozanne PhD

 France Télécom R&D

 Collab. UPMC

Contracts in a Model-Driven Tool Chain

 Issue

 How to automate

contracting from business

requirements to execution

platforms

 Solution

 End-to-end Model-driven

engineering process for

supporting contracts

 The FAROS project

funding

 Extension of the contracting kernel

 Event definition

 Observers and Checkers

 Applications

 Validate the contracting kernel

 5 different software platforms (including ConFract)

 3 different case studies (including one using ConFract)

Contracts in a Model-Driven Tool Chain

funding

Motivations

 Contracting

 Adding Self-adaptive Capabilities

 Feature Model Composition

 Conclusion and Perspectives

Agenda

 Issue

 How to master the dynamicity of large scale software systems

 Self-adaptive system

 Capacity to monitor its own behavior, and its environment

 Capacity to evaluate relevant states

 Capacity to change behavior

 Focus

 Contracting mechanisms

Monitoring mechanisms

Self-adaptation

 Capacity to automatically reestablish violated contracts or

to reconfigure the architecture

Making contracts negotiable

Contract clauses:
nbMaxUsers >=200

memoryLevel<=50

…

Negotiate on non

functional aspects

Integrate negotiation

into components

Drive negotiation

processes

Exploit contract

information

 Inspired by the Contract-Net-Protocol [Smith 80]

 reusing responsibilities determined by ConFract

 Parameterized by negotiation policies (alternatives)

 Concession based and effort based policies

General negotiation model

external composition contract on <pl>

provisions on server interface MultimediaPlayer

mpl:

 void start()

 pre: guarantor: <fp> beneficiaries: <pl>

 c.canPlay(…

Guarantor

Negotiation

Proposals

Hervé Chang PhD

Funding and collab.

France Télécom R&D

 Patterns for describing compositional non-functional

properties

 Classification of properties

 Integration in component hierarchy

 Exploitation in effort-based

 negotiation

 Self-adaptiveness of the negotiation system

 Negotiation mechanisms as components

 Contracts on these components (timeout, oscillation detection)

Additional Capabilities

Core

<c>

nbMaxUsers

GC

nbMaxUsers

GC

Propagation

UserManager

<um>

Server

<s>

 Issues

 Decision making systems are using Service Level Agreements

 Quality of Service (performance, availability, etc.)

 Quality of Information (coherency, freshness, etc.)

 How to manage allocation of scarce resources (bandwidth, CPU, etc.)

 How to manage changing situations

 Solution: a framework

 Data richness (e.g., aggregation)

 Quality of information (QoI) awareness (e.g., QoI specification and

mechanisms)

 Resource awareness and enforcement

 Self-adaptation (e.g., runtime changes of clients, resources…)

Adaptive Monitoring

Self

Adaptation

ADAMO: QoI-aware Monitoring Framework

Bao Le Duc PhD

 France Télécom R&D

 Collab. UPMC

Data

Collector view q1 view q2

QoI

Control

Dimensions:

- CPU

- Memory

With QoI constraints:

- age of values ≦ 5 minutes

- coherency between values ≦ 2 minutes

Resource

constraints

Motivations

 Contracting

 Adding Self-adaptive Capabilities

 Feature Model Composition

 Conclusion and Perspectives

Agenda

 Software Product Lines

 Factoring out commonalities for reuse

Managing variabilities for software mass customization

 Feature Models

Widely used

 Formal Semantics

 Propositional formula (^, v, ~, , =>)

 Automated Reasoning Techniques

 Satisfiability, configuration checking…

 Tools

 Language, editors...

Feature Modeling

Cross-tree constraints
NaturalLight and Night Implies

(Infrared and not LargeAngle)

...

 Issue

 How to manage large, complex and multiple feature models

 Solution

 Apply Separation of Concerns

 Provide a set of composition / decomposition operators

 Ground the operators on a sound basis (semantic not syntactic)

 Reuse / extend automated reasoning techniques

Composition of Feature Models

 Insertion, aggregation, merge (union, intersection)

 Slice (= projection)

 Resulting support

 Well-defined semantics

 Guaranteeing semantic properties by construction (configuration set)

 Producing more compact feature models

 Efficiently implemented (good scalability w.r.t. existing techniques)

Composition operators

=

=

Mathieu Acher PhD

 MESR funding

 Applications

 Consistent assembly of variable service workflow

 End to end variability handling in video-surveillance processing chains

 Reserve engineering of architectural feature models

Domain Specific Language and Applications

FAMILIAR

And-Group

Optional

Mandatory

Xor-Group

Or-Group

constraints

……..

DirectX

V10 V10.1 v11

Outputs

VIVO DVI HDMI

S-Video Composite

VGA

GraphicCard And-Group

Optional

Mandatory

Xor-Group

Or-Group

TV output

constraints

VGA excludes TV output

HDMI implies v10.1 or v11

constraints

……..

constraints

……..

constraints

……..

// foo.fml

fm1 = FM (“foo1.tvl”)

fm2 = FM (“foo2.m”)

fm3 = merge intersection { fm1 fm2 }

c3 = counting fm3

renameFeature fm3.TV as

“OutputTV”

fm5 = aggregate { fm3 FM

(“foo4.xml”) }

assert (isValid fm5)

fm6 = slice fm5 including fm5.TV.*

export fm6

True/False

8759

“OutputTV”, “TV”

Interoperability Language facilities Environment

Motivations

 Contracting

 Adding Self-adaptive Capabilities

 Feature Model Composition

 Conclusion and Perspectives

Agenda

Results

2002 2005 2008 2011

Contracting system

Contracts and Tests

Contracting Framework and Models

Components

& services

Alain

Ozanne

Feature Model composition

Supporting DSL

Software

Product

Lines

Mathieu

Acher

Non-functional Properties

Contract Negotiation

Self-adaptive Monitoring

Components

& services
Bao.

Le Duc

Hervé

Chang

Research Roadmap

Contracting

Model-driven Construction of Self-adaptive Systems

1 ongoing PhD

Checking and Contracting Self-Adaptive Systems

Software Product Lines of Self-Adaptive Systems

Scalable Feature Model Composition

Relation of Features to Other Models

 2 international journals: SQJ, JSW

 1 national journal: L’Objet

More than 20 international conferences: ASE, CBSE, SC,

SAC, SEAA, SEKE, ECMFA, SOFSEM…

 And other publications such as

 International workshops

 Registered / publicly available software

 Contract and project deliverables…

Main publications

Questions

