Taming Complexity of Large
Software Systems:

Contracting, Self-Adaptation
and Feature Modeling

Philippe Collet

Habilitation a diriger des recherches
Université de Nice - Sophia Antipolis

6 décembre 2011

]

wn3c

ia Antipolis

&

_ ;
Contracting m' mlm
g Large software systems

Adding self-adaptive
capabilities

Software Enginggring

0 Systematic, quan
disciplined approaches

O Master complexity to
reduce costs

B OO

What this is all about <"

Software
Product

Lines L diaye & poiftwar e fsypseenss

Variability models

B OO

Scientific Context and Approach é‘\y\@

d Ever-rising complexity of software

O Ultra-large scale (size, volume of data, decentralization, conflicting
requirements, continuous evolution)

U New software architectures (distributed components, services)
= Finding the right trade-off between reliability and flexibility

= Providing well-grounded but pragmatic techniques and
tools for software architects
0 How to design dynamically reconfigurable components with confidence
O How to deal with changes at reconfiguration / run times

O How to manage variability in large systems of systems

B OO

O Motivations
U Contracting

4 Adding Self-adaptive Capabilities

U Feature Model Composition

4 Conclusion and Perspectives

B &L

Software Contracting

d Issues in Component-Based Software Engineering
U How to obtain confidence in component specification and assembly

O How to take into account dynamic reconfigurations

A Solution
U Adapted forms of contracts for CBSE

1 Contracts?

Q0 Specification and verification of properties on software entities, while
attributing well-defined responsibilities [Design by Contract, Meyer88]

O Executable assertions for Object-Oriented languages (Eiffel...)

B &L
[p—

ConFract: a contracting system

on <pl>
context void mpl.start()

post h.lastUrl () .equals(getUrl())

Spec.

pre c.expectedCPUUsage (getUrl () .getDataSource(),
<this>.attributes.getFrameRate()) <= 60

contrbleurs

BC CC LC CTC
T T T T

Interface Contract | | |~ Facapiayer<ip> -~~~ - :
I
: SA [imfVersion, width, height]
External : S ——r—r o o I
Composition — GuiLaunch ~) r h-Aistory
uiLauncher | \‘_ Player
LINF- I
Contract ! b 1Tl <eb mlgumtdr
. e .
|mwIEiIn Multimedia Y
| Player |
Internal > I
Composition I S — :
Contract I ||| Video Configurator | Logger I
: <VC> <L> :
L clg:Conflqurater_ _ _ _ _ _ _ histtistory _ _ _ _ !

Fractal hierarchical components

Contract Management
O Incremental construction

U Handling of dynamic reconfigurations

B &L

Dynamic
building

@

Contract Object

® Participants and
responsibilities

(guarantor, beneficiary)
= Moments of validity

(checking driver)

-\
{ 1

']
\ - J

Collaboration France

'_‘J

Télécom R&D

&

Interact: a Contracting Framework

 Issues
0 How to integrate different formalisms
1 How to deal with different forms of architectures

J Framework

provides observations

provides on the syslem
DSL rules Formalism Architecture
generator Plugin Il
Formalism DSL K
Integrator Architecture
interprets rules evaluates rules
(responsibilities) l kernel \ (observations) | Integrator
provides
specs
- |I EDEGE _-__________..-—-..__________-
Business
Designer —_— assembles with
guarantee and
- diagnosis
ractal Service) "E‘reruine DH
component Client Provider
Component
Assembler
BEEOOO

Interact: a Contracting Framework

1 A model for the contracting kernel
O Abstraction

Contract

updateForRelation(r)

O Extensible for languages |
Agreemem creates, updates canstraing ArchitecturalPattern
 Extensible for platforms e oo e
refers
responsible - *
Clause Entity Relation
haolds T holds
Obligation Assumption

1 A generic and well-grounded contracting kernel

0 Assume-guarantee logic (Abadi/Lamport) for responsibility determination
[Abadi & Lamport 90]

U Support for horizontal and vertical compositions Alain Oranne PhD

= France Télécom R&D (7
= Collab. UPMC -
EEOOO
o E—

O Issue

0 How to automate
contracting from business
requirements to execution
platforms

1 Solution

U End-to-end Model-driven
engineering process for
supporting contracts

U The FARQOS project

B &L

Contract

updateForRelationdr)

ArchitecturalPattern
Agreement creates, updates constrains
acceptRelation ()
update getParticipantsF orRole (String role)

refers

respaonsible

Clause Entity

holds Y holds

Obligation \ Assumption

Model X \=> @
fransfo@ Software
Architect

Central [==
Model %cnntract

rransfa@

Relation

Service and Component Architectures NR
funding

Contracts in a Model-Driven Tool Chain

1 Extension of the contracting kernel

O Event definition

Element
(Element)

5
Agreement

[Observers and Checkers

-checkedOn LiteralChecker

Q Application
pplications =

O Validate the contracting kernel

U 5 different software platforms (including ConFract)

U 3 different case studies (including one using ConFract) R

EECOOO funding

_¥

O Motivations
4 Contracting

4 Adding Self-adaptive Capabilities

U Feature Model Composition

4 Conclusion and Perspectives

EEELL

O Issue

U How to master the dynamicity of large scale software systems

4 Self-adaptive system o,
~~~~~~~~~~~~~~ : /;,
U Capacity to monitor its own behavior, and its envwor;m 2 g\g
U Capacity to evaluate relevant states x ) Nf
N /
[ Capacity to change behavior N i\ 7
4 Focus

O Contracting mechanisms

O Monitoring mechanisms

EEELL



Making contracts negofiable

1 Capacity to automatically reestablish violated contracts or
to reconfigure the architecture

Negotiate on non
functional aspects

o)
Conirs allSes:

= nbMaxUsers >=200
‘ memoryLevel<=50

Exploit contract
Information

Integrate negotiation
Into components

Drive negotiation

Processes
EEEOC



General negotiation model

a Inspired by the Contract-Net-Protocol [Smith 80]

Q reusing responsibilities determined by ConFract

Q Parameterized by negotiation policies (alternatives)

O Concession based and effort based policies

Negotiation

Negotiation Initiator Guarantor Proposals

controle

BC cC LE cTC /

FractalPlayer <fp>

geneficiairy

\

Multime: dI
Player

[ —— — ml ——————————— I
- Video Configurator LI_ Logger IVOld Starto
<ve> <L> | pre: guarantor: <fp> beneficiaries: <pl> |
c1g:ConTIgurator hIst:HIstory C&a.nplaﬁ _______ l N
EEEOO France Télécom R&D

]

Hervé Chang PhD
Funding and collab.

&



Additional Capabilities

 Patterns for describing compositional non-functional

properties
O Classification of properties
U Integration in component hierarchy
O Exploitation in effort-based

negotiation

GC ~ Propagation
v )

Server

<S>

QO

nbMaxUsers
- N\ T

Core
<c>

\Dli.MaXL

OH

UserManage
<um>

[

q

-

ers

d Self-adaptiveness of the negotiation system

U Negotiation mechanisms as components

O Contracts on these components (timeout, oscillation detection)

EEELL




Adaptive Monitoring % M

J Issues

O Decision making systems are using Service Level Agreements

= Quality of Service (performance, availability, etc.)

= Quality of Information (coherency, freshness, etc.)
U How to manage allocation of scarce resources (bandwidth, CPU, etc.)

U How to manage changing situations

4 Solution: a framework
U Data richness (e.g., aggregation)

O Quality of information (Qol) awareness (e.g., Qol specification and
mechanisms)

] Resource awareness and enforcement

O Self-adaptation (e.g., runtime changes of clients, resources...)

EEELL




ADAMO: Qol-aware Monitoring Framework

Dimensions:
Cllents - CPU

- Memory
A lic:ati With Qol constraints:
pplicanions - age of values = 5 minutes

= - coherency between values = 2 minutes
. lL Data / 4

Collector

----- _-l

Qol

Control

Resource
/ constraints

J

\ /

@ Data sources Conﬁ‘ ulratiﬂr'l &
Data =y 9 System

providers administrator

EEELL
—

Bao Le Duc PhD
= France Télécom R&D !7’
= Collab. UPMC o~



O Motivations
4 Contracting

4 Adding Self-adaptive Capabilities

U Feature Model Composition

4 Conclusion and Perspectives

HEEE




o.a'ling

1 Software Product Lines

O Factoring out commonalities for reuse

0 Managing variabilities for software mass customization

1 Feature Models
U Widely used

L Formal Semantics

= Propositional formula (*, v, ~, <, =>)

U Automated Reasoning Techniques

| LightingConditions |

-TopV|ew N~
S “‘ | Resolution | [Fleldbfv|ew|

*

= Satisfiability, configuration checking...

EI TOOIS [Outdoors] | Indool‘g

= Language, editors... [LightingNoise |

HeadLight] [ Shadows |

TimeOfDay
N\

Cross-tree constraints
. Xor-Group = ey e e
4 Optional /N NaturalLight and Night Implies
| Mandatory A\ Or-Group (Infrared and not LargeAngle)

HEEE




Composition of Feature Models

 Issue

0 How to manage large, complex and multiple feature models

Jx}itf
%I =

d Solution
O Apply Separation of Concerns
U Provide a set of composition / decomposition operators
U Ground the operators on a sound basis (semantic not syntactic)

U Reuse / extend automated reasoning techniques
EEEEC




Composition operators

U Insertion, aggregation, merge (union, intersection)

o <

O Slice (= projection)

U Resulting support
O Well-defined semantics
O Guaranteeing semantic properties by construction (configuration set)
O Producing more compact feature models

O Efficiently implemented (good scalability w.r.t. existing techniques)

Mathieu Acher PhD

EEEEDC = MESR funding
|



Domain Specific Language and Applications

/l foo.fml
- fm1 =FM (“foo1.tvl”)

fm2 = FM (“foo2.m”)
fm3 = merge intersection { fm1 fm2 }

c3 = counting fm3 &

renameFeature fm3.TV as True/False
 OutputTv™” =) 8759

fm5 = aggregate { fm3 FM p y wT\
(“food.xml”) } OutputTV”, “TV

assert (isValid fmb5)
fm6 = slice fm5 including fm5.TV.*
export fm6

ﬂ FAMILIAR

Interoperability Language facilities Environment

O Applications ==

-

G

O Consistent assembly of variable service workflow <=4
=
U End to end variability handling in video-surveillance processing chains

=S B

L Reserve engineering of architectural feature models S e ==

HEEE —
—



O Motivations
4 Contracting

4 Adding Self-adaptive Capabilities

U Feature Model Composition

4 Conclusion and Perspectives




2008 2011

Alain
zanne

Co
Components d
Hervé
Components

Chan
& services

Contract Neg

Non-functional P_

i Self-adaptive M

Mathieu
Acher

Software
Product
Lines




p

Contracting

1 ongoing PhD
Model-driven Construction of Self-adaptive Systems __ SHetypa—

FINANCE W\.R

Checking and Contracting Self-Adaptive Systems

4'yourCast
NR

Software Product Lines of Self-Adaptive Systems




Main publications
d 2 international journals: SQJ, JISW
1 national journal: L’Objet

1 More than 20 international conferences: ASE, CBSE, SC,
SAC, SEAA, SEKE, ECMFA, SOFSEM...

d And other publications such as
U International workshops
U Registered / publicly available software

U Contract and project deliverables...




applications architecture case checking C 0 m p 0 n e nt
composition concerns CcO nf| g U ra.ti on constraints
CO nt raCt control data engineering fe atU re fractal
framework implementation inte rface language level management
Im O d e I monitoring ~ €( otiation operator  process
Properties provided ... qoi s oo o
self-adaptation software pectication support SYSt€@mMS
testing variability




