Empirical Study in SE [1]

Overview
Software Engineering

• IEEE : « Application of a systematic, disciplined, quantifiable approach to development, operation and maintenance of a software »

=> How to assess the benefits of your research
Quantitative / Qualitative

• Quantitative: quantifying a relationship or comparing two or more groups. Identify a cause-effect.

• Qualitative: studying objects in their natural setting. Interpret a phenomenon based on explanation.
Strategies

• Survey: Investigation performed in retrospect. Analysing a representative sample with the intent to generalise the conclusion.

• Case study: Monitor a living project or an activity. Aim at identify a specific attribute or a relationship.

• Experiment: Done in a laboratory. Different treatments performed at random. Measure the effect of variables.
Strategies vs Quant. & Qual

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Quantitative vs Qualitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey</td>
<td>Both</td>
</tr>
<tr>
<td>Case Study</td>
<td>Both</td>
</tr>
<tr>
<td>Experiment</td>
<td>Quantitative</td>
</tr>
</tbody>
</table>
Measurement

• Measurement is a mapping from the empirical world to the formal, relational world.

• The input and the output must be measured to control the study and to see the effects

• Metrics: (1) The field of software engineering measurement, or (2) the entity which is measured
Scale

- **Nominal**: maps attributes into a name or a symbol (a class)
 - Ex: Red, Blue, Yellow
- **Ordinal**: ranks attributes
 - Ex: low, middle, high
- **Interval**: ranks attributes and gives them a distance
 - Ex: number of stars for hotel
- **Ratio**: ranks and distance + zero and ratio
 - Ex: Real
Goal / Question / Metric paradigm

1. Conceptual level (Goal)
 – Define the goal of the empirical study (objects)

2. Operational level (Question)
 – Set the questions that characterize the assessment of the goal.

3. Quantitative level (Metric)
 – Identify the data and the measure needed to answer the question.
Exercise

• Define your empirical study:
 – Goal
 – Question
 – Data

=> Need of a process to design a study
Experiment Principles

Cause ➡ Effect

Theory ⇩ Observation

Treatment

Independent variable

Outcome

Dependent variable
Concepts (1/2)

• **Dependent variable (response variable):** the studied variable
• **Independent variables:** variables that can be either controlled or manipulated.
• **Factors:** independent variables that will change (manipulated)
• **Treatment:** Value of a factor
Concepts (2/2)

• Object: Object of the study (product, process, resource)

• Subjects: people that realise the treatment (if needed)
Process

Idea

1. Definition
2. Planning
3. Operation
4. Analysis & Interpretation
5. Package

⇒ Conclusion
Definition: Goal Template

• Analyze <Object(s) of study>
• For the purpose of <Purpose>
• With respect to their <Quality focus>
• From the point of vies of the <Perspective>
• In the context of <Context>
Definition: Examples

<table>
<thead>
<tr>
<th>Object</th>
<th>Purpose</th>
<th>Quality Focus</th>
<th>Perspective</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>Characterize</td>
<td>Effectiveness</td>
<td>Developer</td>
<td>Student</td>
</tr>
<tr>
<td>Process</td>
<td>Monitor</td>
<td>Cost</td>
<td>Modifier</td>
<td>Project</td>
</tr>
<tr>
<td>Metric</td>
<td>Predict</td>
<td>Reliability</td>
<td>Maintainer</td>
<td>Large software</td>
</tr>
<tr>
<td>Theory</td>
<td>Control</td>
<td>Maintenability</td>
<td>Project Manager</td>
<td>OSS</td>
</tr>
<tr>
<td>Change</td>
<td>Portability</td>
<td></td>
<td>Customer</td>
<td>Senior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>User</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Researcher</td>
<td></td>
</tr>
</tbody>
</table>
Planning: 7 steps

1. Context selection
2. Hypothesis formulation
3. Variables selection
4. Selection of subjects
5. Experiment design
6. Instrumentation
7. Validity evaluation

⇒ Experiment design
Planning: 1- context selection

Trade-off between cost and generalisation

• Student vs Professionals
• Toy vs real software
• Off-line vs on-line
Null hypothesis (H_0): No effect.
 – So we expect to reject it!

Alternative hypothesis (H_a, H_1, etc.): Effect.
 – We expect to accept it!

Type-I-Error: Reject H_0 although it is true (Conclude that there is an effect although there is no).
 – $P($Type-I-Error$)=P($reject $H_0 \mid H_0$ is true$)$

Type-II-Error: Not reject H_0 although it is false (Conclude that there is no effect although there is one).
 – $P($Type-II-Error$)=P($not reject $H_0 \mid H_0$ is false$)$
Planning: 3 – Variables Selection

• Independent Variables:
 – No advice or guideline.
 – Requires domain knowledge.
 – Include the choice of the scale.

• Dependent Variables:
 – Support for the hypothesis.
 – Have to be easily measurable (metrics aggregation).
Planning: 4 – Selection of Subjects

• Large impact on the generalisation
• Randomized
 – Pure random
 – Quota
 – Blocked
Planning 5 – Experiment Design

• One factor with two treatments
• One factor with more than two treatments
• Two factors with two treatments
• More than two factors each with two treatments
Planning 6 - Instrumentation

• Objects
• Guidelines
• Measurement
Planning 7 – Validity evaluation

• Conclusion validity
 – Low statistical power, ...

• Internal validity
 – History, maturity, ...

• Construct validity
 – Mono-method bias, ...

• External validity
 – Selection, ...
Analysis

• Descriptive Statistics
• Data set reduction
• Hypothesis testing
Analysis: Descriptive Statistics

<table>
<thead>
<tr>
<th>Scale</th>
<th>Central Tendency</th>
<th>Dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>Mode</td>
<td>Frequency</td>
</tr>
<tr>
<td>Ordinal</td>
<td>Median</td>
<td>Interval of variation</td>
</tr>
<tr>
<td>Interval</td>
<td>Mean</td>
<td>Standard deviation, variance</td>
</tr>
<tr>
<td>Rational</td>
<td>Geometric mean</td>
<td>Coefficient of variation</td>
</tr>
</tbody>
</table>

![Boxplot](image1.png)

![Histogram](image2.png)

![Scatter plot](image3.png)
Analysis: Outliers

• Remove data that clearly does not fit the sample

Scatter plots
Analysis: Hypothesis Testing 1/3

• Rewrite the null hypothesis according to the measure
 – Ex: one factor, two treatments => same probability
 \(p(A) = p(B) = 1/2 \)

• Test Error-I : \(p(\text{Reject Ho} \mid \text{Ho is true}) \)
 – \(p(\text{Reject} \mid p(A) = p(B) = 1/2) \)
 – If we have 15 tests. \(P(4 \text{ or less}) = 0.059, P(5 \text{ or less}) = 0.1509 \). If we obtain 4 or less A then, this is not due to hazard. If we obtain 5 or less, then it may be due to hazard.
 – 0, 1, 2, 3 or 4 => reject
 – 5, 6 ... => cannot reject
Analysis: Hypothesis Testing 2/3

<table>
<thead>
<tr>
<th>Design</th>
<th>Parametric</th>
<th>Non-param</th>
</tr>
</thead>
<tbody>
<tr>
<td>One factor, one treat</td>
<td></td>
<td>Chi-2, Binomial test</td>
</tr>
<tr>
<td>One factor, two treatments, rand design</td>
<td>t-test, F-test</td>
<td>Mann-Whitney, Chi-2</td>
</tr>
<tr>
<td>One factor, two treatments, paired</td>
<td>Paired t-test</td>
<td>Wilcoxon, Sign test</td>
</tr>
<tr>
<td>One factor, more that two treatments</td>
<td>ANOVA</td>
<td>Kruskal-Wallis, Chi-2</td>
</tr>
<tr>
<td>More than one factor</td>
<td>ANOVA</td>
<td></td>
</tr>
</tbody>
</table>
Example

• Goal: Show that our tool improves efficiency for developers to evolve their software

• H_0: time needed to realize an evolution is the same with or without our tool (one factor, two treatment)
 – t-test to compare the mean (check normal law)

• Two groups (with and without our tool)

• Object: realize one evolution on an existing product
Conclusion

• Empirical Study as a validation

• **Quantitative** / Qualitative

• Design Process
 – Design, Plan, Analysis